Region BNR Facility Examples

#Toppenish

Kittitas

#Cashmere

Topics

- **#Toppenish design**
- **#Operational changes used**
- **#Performance** review

#Overview on kittitas

EBPR Plant Modifications Tool Box

Function	Tools	A.S.	SBR	Ditch
Anaerobic				
Contact	Turn off some mixers	X		
	Divide/baffle tanks	Χ		
	Add external tank		X	Х
	React/fill is anaerobic		Х	
Minimize NO3	Aeration on/off	X	X	X
to Anaerobic				
Tank	Aeration low DO	X	Х	X
	Convert to anoxic/aerobic			
	tanks	X		
	Convert to Bardenpho	X		
	Add anoxic contact tank	X	X	
	Provide anoxic zone for			
	RAS (JHB Process)	X	Х	X
	Step feed SBR		X	
Minimize DO to				
	Check influent head			
Anaerobic Tank	drop/aeration	X	X	Х
		X	X	X

EBPR Plant Modifications Tool Box

Function	Tools	A.S.	SBR	Ditch
Optimize SRT	Sludge wasting control	X	Χ	X
			TOWN TO THE REAL PROPERTY.	
	Create setting periods in			
Get more food	anaerobic	X		X
for PAOs	Industrial sources	X	X	X
	Onsite fermentation of waste			
	solids	X	X	X
	WAS, RAS or ML fermentation	Χ	Χ	X
Minimize P in				
recycle	Keep waste sludge aerobic	X	X	X
	Off site sludge processing	X	X	X
	Composting	X	X	X
	Anaerobic digester struvite recovery	X	X	X
Optimize P uptake	Provide sufficient aerobic time	Х	Х	X
	Provide sufficient DO	Χ	Χ	X
	Modify to staged kinetics	X		
	Waste sludge from aerobic zone	Х	Х	X

Toppenish WWTP

- **#Headworks**
- **#Primary Treatment**
- **#Bardenpho Process**
- ****WAS to Rotary Drum Thickener**
- ****Anaerobic Digestion**
- **#**Screw Press Dewatering

Design Criteria - Toppenish.

Parameter	Unit	Annual Avg.	Max. Month	Unit	Max. Month
Avg Flow	Mgal/d	1.23	1.67	Mgal/d	1.67
BOD	lb/d		2581	mg/L	185
TSS	lb/d		2634	mg/L	189
TKN	lb/d		516	mg/L	37
TP	lb/d	N/A	N/A	mg/L	N/A

Toppenish

Mostly Bardenpho Process

2-Train Volumes and Detention at Max Month Flow

		Volume	Detention
Proces Step	Stages	gallons	Time, hrs
Anaerobic	4	84,000	1.2
Anoxic	2	293,000	4.2
Aerobic	4	512,000	7.4
Total		889,000	12.8

Toppenish Operational Changes to Improve EBPR

- 1. Mixers in anaerobic zone off/on
- 2. Lower SRT at warmer temperatures
- 3. Ferment in primary treatment
 - Increase sludge blanket
 - Recirculate sludge
- 4. During study lowered RAS recycle ratio

Figure 1. Toppenish, November 19, 2014, sample, Neisser Stain, 1000x

Figure 2. Toppenish microscopic observations with Neisser staining 1000X

June 10, 2015 sample- good PAO presence

September 16, 2015

June 10, 2015 sample, compact dense floc SVIs are great - commonly 70-95 mL/g September 16, 2015

Operational changes made

			RAS	MIXERS	PRIMARY
PHASE	DATE	SRT	RATIO	ON TIME	ELUTRI.
1	AUG6-SEP10		0.3	ON-	8
2	SEP18-OCT1		0.4	30/d	13
3	OCT8-NOV6		0.6	30/d	21
4	NOV12-JAN7		0.8	ON	17
5	JAN14-MAR4		0.8	2/WK-30	
6	MAR18-APR22	15	0.4	3/WK-15	
7	MAY7-JUL23	18	0.3	3/WK-15	
8	JUL30-AUG12	12	0.35	3/WK-15	

Sampling and analyses

	Primary	Secondary
Parameter	Effluent	Effluent
COD	Χ	X
BOD	Χ	X
TOTAL, P.	Χ	X
SOLUBLE, P.	Χ	X
TSS	Χ	X
VSS	Χ	X
TKN	Χ	X
рН	Χ	X
NH3-N		X
NO3-N		X

EBPR was occurring

Figure 1. Toppenish, November 19, 2014, sample, Neisser Stain, 1000x

Figure 2. Toppenish microscopic observations with Neisser staining 1000X

June 10, 2015 sample- good PAO presence

September 16, 2015

June 10, 2015 sample, compact dense floc SVIs are great - commonly 70-95 mL/g September 16, 2015

Some days with P <1.0 mg/L

P removal not just f(BOD:P) BOD:P ratio is low

P Removal and Primary Effluent BOD:P

September

Best removal in last 3.5 months

Not because higher BOD

Not related to recycle NO3-N

Operating conditions may have affected performance

			RAS	MIXERS	PRIMARY	
PHAS						
Е	DATE	SRT	RATIO	ON TIME	ELUTRI.	% P REMOVAL
1	AUG6-SEP10		0.3	ON-	8	51
2	SEP18-OCT1		0.4	30/d	13	73
3	OCT8-NOV6		0.6	30/d	21	36
4	NOV12-JAN7		0.8	ON	17	43
5	JAN14-MAR4		0.8	2/WK-30		42
6	MAR18-APR22	15	0.4	3/WK-15		46
7	MAY7-JUL23	18	0.3	3/WK-15		73
8	JUL30-AUG12	12	0.35	3/WK-15		91

What may have helped improve P removal performance?

- #More food from solids hold up in anaerobic tanks due to minimal/no mixing
- **#RAS** fermentation?
- **Lower RAS recycle ratio possibly less dilution of soluble readily available COD and more sludge hold up
- **#Lower SRT**
- #Performance seems limited by available BOD for PAOs

Acknowledgements

- ****Not possible without Eric Bakker and Staff!**
- ****Awsome effort!**
- #Thank you to Nancy Wetch (G&O) for plant design information
- #Thank you to Yakima Valley Community College students and Dr. Tanya Knickerbocker for special plant testing
- **Ryan Anderson, Melanie Tucker, Dr.**James Barnard

Kittitas - SBR Facility

Kittitas

Parameter	Unit	Max. Month	Avg. Month	Unit	Avg.
Avg Flow	Mgal/d	0.5	.25	Mgal/d	0.25
BOD	lb/d	-	430	mg/L	206
TSS	lb/d	-	433	mg/L	212
TKN	lb/d	-	96	mg/L	46
NH4-N	lb/d	-	54	mg/L	26

TREATMENT SCHEME - KITTITAS.

SBR							
Aeration Type	Number of		Nominal Detention	Dep	oth		
Aciation Type	Tanks	(Mgal) per Tank	Time (hrs) per Tank	High (ft)	Low (ft)		
Fine Bubble	2	0.71	34.1	16	11		

SBRs have set cycle duration and timed sequences

#Fill/Mix – The EBPR Anaerobic Contact

¥Fill/Mix/Aerate

*****Aerate

#Settle

#Decant

#"Time" vs volume

Kittitas SBR 6 hour cycle steps based on nitrification

Function	Time, hours
Fill	0.50
Fill, Mix	0.50
Fill, Aerate	2.00
Aerate	1.80
Settle	0.90
Decant	0.30

Designed mainly for nitrification Anoxic time? Anaerobic contact?

We pushed limit on time needed for nitrification Get more time for fill without aeration

Anoxic

maybe some BOD left for EBPR?

Need to remove NO3 before anaerobic fill

- # Aerate at low DO for nitrification/NO3 removal**
- Provide mixing and NO3 removal before settling period –ORP control**
- # Mix and allow NO3 removal after settling and decant and before fill
- # If not enough time add an external anaerobic tank and pumps
- # Add external anoxic RAS tank and Pumps
- # Likely need higher MLSS to make these work in existing designs
 - - □ Granular sludge stay tuned

Kittitas efforts

- 1. Extend fill without aeration –
- 2. Experiment with DO set points -
- 3. Fill during decant

Modified Operation did improve SVIs but only a little EBPR

Function	Time, hours
Fill/Decant	0.30
Fill	1.00
Fill/Mix No Air	1.00
Fill/Aerate	0.70
Aerate	2.10
Settle	0.90

			William Control		
2014-2015	MLSS	SVI	SRT		
SBR # 1	mg/L	ml/g	d		
Aug-14	1368	332	18		
Sep-14	1466	485	17		
Oct-14	1044	469	27		
Nov-14	1184	271	13		
Dec-14	1748	152	24		
Jan-15	2108	145	27		
Feb-15	2440	148	45		
Mar-15	2490	165	15		
Apr-15	2028	225	20		
May-15	2386	210	25		
Jun-15	2258	264	17		
Jul-15	1956	302	12		
September 16, 2015	Tank down for maintanence				

Kittitas Apr 30 SBR Neisser Stain

At least a few Phosphorus accumulating organisms (PAOs)

Phosphorus results
Variable – some evidence of
EBPR
Plant effluent is sparkling

Acknowledgements

#Thanks to Brenda Bach doing whatever is possible and good spirit!